Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0043319990220060533
Archives of Pharmacal Research
1999 Volume.22 No. 6 p.533 ~ p.541
Metabolism-based Anticancer Drug Design
Kwon Chul-Hoon

Abstract
Many conventional anticancer drugs display relatively poor selectivity for neoplastic cells, in particular for solid tumors. Furthermore, expression or development of drug resistance, increased glutathione transferases as well as enhanced DNA repair decrease the efficacy of these drugs. Research efforts continue to overcome these problems by understanding these mechanisms and by developing more effective anticancer drugs. Cyclophosphamide is one of the most widely used alkylating anticancer agents. Because of its unique activation mechanism, numerous bioreversible prodrugs of phosphramide mustard, the active species of cyclophosphamide, have been investigated in an attempt to improve the therapeutic index. Solid tumors are particularly resistant to radiation and chemotherapy. There has been considerable interest in designing drugs selective for hypoxic environments prevalent in solid tumors. Much of the work had been centered on nitroheterocyclics that utilize nitroreductase enzyme systems for their activation. In this article, recent developments of anticancer prodrug design are described with a particular emphasis on exploitation of selective metabolic processes for their activation.
KEYWORD
Prodrugs, Cyclophosphamide, Bioreduction, Sulfoxide, Tirapazamine
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)